GGSIPU mathmatics 2010

1. If $\left|z_{1}-1\right|<1,\left|z_{2}-2\right|<2,\left|z_{3}-3\right|<3$, then $\left|z_{1}+z_{2}+z_{3}\right|$
a is less than 6
b is more than 3
c is less than 12
d lies between 6 and 12
2. If \mathbf{z}_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|+\left|z_{1}-z_{2}\right|$, then
a $\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)=0$
b $\operatorname{Re}\left(\frac{x_{1}}{x_{2}}\right)=0$
c $\operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)$
d None of the above
3. The largest term common to the sequences $1,11,21,31$, .. to 100 terms and $31,36,41,46 \ldots$ to 100 terms is
a 381
b 471

C 281
d None of these
4. If the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ are α_{1}, β_{1} and those of $a_{2} x^{2}+b_{2} x+c_{2}=0$ are α_{2}, β_{2} such that $\alpha_{1} \beta_{1}=1$ $=\beta_{2} \beta_{2}$, then
a $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
b $\quad \frac{a_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{a_{2}}$
c $\quad a_{1} a_{2}=b_{1} b_{2}=c_{1} c_{2}$
d None of the above
5. The number of real roots of $x+3{ }^{4}+x+5{ }^{4}=16$ is
a 0 b 2
c 4 d None of these
6. The number of six digits numbers that can be formed from the digits $1,2,3,4,5,6$ and 7. So,that digit do not repeat and the terminals digits are even, is
a 144 b 72
c 288 d 720
7. The value of the expression
${ }^{K-1} C_{K-1}+{ }^{K} C_{K-1}+\ldots+{ }^{n+k-2} C_{K-1}$ is
a ${ }^{n+k-1} C_{k-1}$
C $\quad{ }^{n+k} C_{k}$
b ${ }^{n+k-1} C_{k}$
d None of these
8. The system of equations

$$
\begin{aligned}
& x+2 y+3 z=4 \\
& 2 x+3 y+4 z=5 \\
& 3 x+4 y+5 z=6 \text { has }
\end{aligned}
$$

a many solutions b no solution
c unique solution d None of these
9. A skew symmetric matrix S satisfies the relation $S^{2}+I=0$, where I is a unit matrix, then $S S^{\prime}$ is equal to
a l b
b 21
C - I
d None of these
10. A die is rolled so that the probability of face I is proportional to $I, i=1,2, \ldots, 6$. The probability of an even number occurring when the die is rolled, is
a $\frac{7}{4}$
b $\frac{4}{7}$
(c) $\frac{5}{7} \quad$ (d None of these
11. If $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\alpha$, then x^{2} is equal to
$a \sin 2 \alpha$
b $\sin \alpha$
b $\cos 2 \alpha$
d $\cos \alpha$
12. $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)$ is equal to
a $\frac{2 a}{b}$ b $\frac{a}{b}$
C $\frac{b}{a}$ C $\frac{2 b}{a}$
13. In a $\triangle A B C, A: B: C=3: 5: 4$, then $a+b+c \sqrt{\mathbf{2}}$ is equal to
a 2b b 2c
c 3b d 3a
14. The set of values of x for which $\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \cdot \tan 2 x}=1$ is
a $\begin{array}{lll}\phi & \text { b } \quad\left\{\frac{\pi}{4}\right\}\end{array}$
c $\quad\left\{n \pi+\frac{\pi}{4}, n=1,2,3, \ldots\right\}$
d $\left\{2 n \pi+\frac{\pi}{4}, n=1,2,3, \ldots\right\}$
15. Which of the two $3 x-4 y+4=0$ and $3 x-3 y+12=0$ is nearer to origin?
a $4 x-3 y+12=0$
b $3 x-3 y+12=0$
c $3 x-4 y+4=0$
d None of these
16. If the equal sides $A B$ and $A C$ each equal to a of a right angled isosceles $\triangle A B C$ be produced to P and Q so that $B P . C Q=A B^{2}$, then the line $P Q$ always passes through the fixed ppoint
a a,0
b 0,a
c a, a
d None of these
17. $A B C$ is a variable triangle with yhe fixed vertex $C 1,2$ and A, B having the coordinates $\cos t, \sin t$, $\sin t,-\cos t$ respectively where t is a parameter the locus of the centroid of the $\triangle A B C$ is
a $3 x^{2}+y^{2}-2 x-4 y-1=0$
b $3 x^{2}+y^{2}-2 x-4 y-1=0$
C $3 x^{2}+y^{2}+2 x+4 y-1=0$
d $3 x^{2}+y^{2}+2 x+4 y+1=0$
18. A variable circle having fixed radius ' a ', passes through origin and meets the coordinates axes in point A and B. Locus of centroid of $\triangle O A B, O$ being the origin, is
a $9 \quad x^{2}+y^{2}=4 a^{2}$
b $9 x^{2}+y^{2}=a^{2}$
b $9 x^{2}+y^{2}=2 a^{2}$
d $9 x^{2}+y^{2}=8 a^{2}$
19. The condition that the straight line $c x-b y+b^{2}=0$ may touch the circle $x^{2}+y^{2}=a x+b y$, is
a $a b c=1$
b $a=c$
c $\mathrm{b}=\mathrm{ac}$
d None of these
20. If two circles $x-1^{2}+y-3^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
a $2<r<8$
b $r<2$
c $r=2$
d $r>2$
21. The number of distinct normals that can be drawn from $-2,1$ to the parabola $y^{2}-4 x-2 y-3=0$, is
a 1 b
c 3
d 0
22. The parabola $y^{2}=\lambda x$ and $25\left[x-3^{2}+y-2^{2}\right]=3 x-4 y-2^{2}$ are equal, if λ is equal to
a 1 b 2
C 3
d 6
23. The eccentricity of an elipse whose pair of a conjugate diameter are $y=x$ and $3 y=-2 x$ is
a $\frac{2}{3} \quad$ b $\frac{1}{3}$
b $\frac{1}{3}$
d) Vorre of these
24. If the foci of the ellipse $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then the value of b is
a 18 b
-16
c 16 d -18
25. The mumber of vectors of unit length perpendicular to the vectors $\hat{\boldsymbol{i}}=\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{j}}$

And $\overrightarrow{\boldsymbol{j}}=\hat{\boldsymbol{j}}+\widehat{\boldsymbol{k}}$, is
$\begin{array}{llll}a & -1 & b & 2\end{array}$
(c) 4 |d If Infinite
26. If $\hat{i}=\hat{\imath}+\hat{j}+\widehat{k}, \quad \mid \vec{q}=4 \hat{i}+3 \hat{j}+4 \widehat{k}$ and $\hat{\imath}=\hat{\imath}+\alpha \hat{j}+\beta \widehat{k}$ are linearly dependent vectors and $\mid=$ $\sqrt{\mathbf{3}}$, thent
a $\alpha=1, \beta=-1 \quad$ b $\quad \alpha=1, \beta= \pm 1$
$\left.\| b_{\|}\right) \alpha=\beta, \beta= \pm 1 \quad$ d $\alpha= \pm 1, \beta=1$
27. Let the pairs $\vec{i}, \overrightarrow{i n}$ and \vec{i} teath onetermines a plane, then the planes are parallel, if
a $\overrightarrow{i x} x \times \vec{b} \times \vec{d}=i \overrightarrow{0}$

28. The equation of the plane perpendicular to the yz-plane and passing through the point $1,-2,4$ and $3,-4,5$ is
a $y+2 z=5$
b $2 y+z=5$
(c) $y+2 z=6 \quad$ d $2 y ; z=\epsilon z=6$
29. If the planes. $2 \hat{i}+\lambda \hat{j}-3 \widehat{k}=0$ and $\cdot \lambda \hat{i}+3 \hat{j}+\widehat{k}=5$ are perpendicular, then λ is equal to
a 2 b -2
c 3 d -3
30. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
a $\frac{10}{6 \sqrt{5}}$
b $\frac{4}{5 \sqrt{2}}$
C $\frac{\sqrt{2}}{10}$
d $\frac{2 \sqrt{3}}{5}$
31. If $y=\cos ^{-1} \sqrt{\frac{\sqrt{1+x^{2}}+1}{2 \sqrt{1+x^{2}}}}$, then $\frac{d y}{d x}$ is equal to
a $\frac{1}{1+x^{2}} \quad$ b $\frac{1}{1-x^{2}}$
(c) $\frac{1}{2\left(1+x^{2}\right)}$
(d) VNne c cthese
32. The value of $\lim _{x \rightarrow \infty}[\sqrt{x+\sqrt{x+\sqrt{\bar{x}}}}-\sqrt{\bar{x}}]$ is
a $\frac{1}{2}$
b 1

C 0
d None of these
33. The values of a, b and c which make the function $\mathrm{f}\left(\mathrm{x}=\left\{\begin{aligned} \frac{\sin (a+1) x+\sin x}{x}, & x<0 \\ c, & x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}}, & x>0\end{aligned}\right.\right.$

Continuous at $x=0$, are
a $a=-\frac{3}{2}, c=\frac{1}{2}, b=0$
b $a=\frac{3}{2}, c=\frac{1}{2}, b \neq 0$
c $a=-\frac{3}{2}, c=\frac{1}{2}, b \neq 0$
d None of the above
34. If the slope of the curve $y=\frac{a x}{b-x}$ at the point 1,1 is 2 , then the values of a and b are respectively
a 1, -2 b $-1,2$
b 1,2 d None of these
35. The sum of intercepts of the tangent to the curve $\sqrt{\bar{x}}+\sqrt{y}=\sqrt{\bar{a}}$ upon the coordinates axes is
a 2a b a
c:) $2 \sqrt{2} a \quad d$ None of these
36. The function $\mathrm{f}\left(\mathrm{x}=\frac{\sin x}{x}\right.$ is decreasing in the interval
a $\left(-\frac{\pi}{2}, 0\right) \quad$ b $\left(\frac{\pi}{2}, 0\right)$
C $\left(-\frac{\pi}{4}, 0\right)$
d None of these
37. The set of points where the function $f(x=|x-2| \cos x$ is differentiable, is
a $\quad-\infty, \infty$
b $\quad-\infty, \infty$
c $0, \infty$
d None of these
38. The domain of the function

$$
f x=\sin ^{-1}\left\{\log _{2}\left(\frac{1}{2} x^{2}\right)\right\} \text { is }
$$

a $[-2,-1] \cup[1,2]$
b $\quad-2,-1] \cup[1,2]$
c $[-2,-1] \cup[1,2] \quad d \quad-2,-1 \cup 1,2$
39. If f is an even function and g is an odd function, then the function fog is
a an even function function
b an odd function
c neither even nor odd
d a periodic function
40. $\int \sec ^{n} x \tan \mathrm{x} \mathrm{dx}$ is equal to
a $\quad \frac{\sec ^{n} x}{n}+c \quad b \quad \frac{\sec ^{2} x}{n}+c$
c $\frac{\tan x}{n}+c \quad d \quad \frac{\sec ^{n} x \tan x}{n}+c$
41. $\int_{\pi / 6}^{\pi / 3} \sqrt{\sqrt{\sin x}+\sqrt{\cos x}} \mathrm{dx}$ is equal to
a $\frac{\pi}{4}$
b $\frac{\pi}{6}$
C $\frac{\pi}{12}$
d None of these
42. The area enclosed by $|x|++_{1} 1|y|=1$ is
a $22 q$ unit
b
3 : sp unit
c $\frac{1}{2}$ squnit d $\sqrt{2}$ sq unit
43. Maximum value of $z=3 x+4 y$ subject to $x-y \leq-1,-x+y \leq 0, x, y \geq 0$ is given by
a 1
b 4
c 6
d None of these
44. The constraints

$$
\begin{aligned}
& -x_{1}+x_{2} \leq 1 \\
& -x_{1}+3 x_{2} \leq 9
\end{aligned}
$$

$X_{1}, x_{2} \geq \mathbf{0}$ defines on
a Bounded feasible space
b Unbounded feasible space
c Both bounded and unbounded feasible space
d None of the above
45. If a variate takes values $a, a r, a r^{2}, \ldots, a r^{n-1}$ which of the relation between means hold?
a $\mathrm{AH}=\mathrm{G}^{2}$
b $\frac{A+H}{2}=G$
b $A>G>H$
d $A=G=H \quad$.
46. If for $\mathrm{n}=4$ the approximate value of integral $\int_{1}^{9} x^{2} d x$ by trapezoidal rule is $2\left[\frac{1}{2} 1+9^{2}+\alpha^{2}+\beta^{2}+7^{2}\right]$, then
a $\alpha=1, \beta=3$
b $\quad \alpha=2, \beta=4$
c $\alpha=3, \beta=5$
d $\alpha=4, \beta=6$
47. The value of
$2 \cos \frac{\pi}{13} \cdot \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$ is equal to
$\begin{array}{llll}a & 2 & b & 0\end{array}$
c $\quad 1 \quad$ d 3
48. The angle of elevation of the top of a vertical tower from two points at distances a and $b a>b$ from the base and in the same line with it, are complementary. If θ is the angle subtended at the top of the tower by the line joining these points, then $\sin \theta$ is equal to
a $\frac{a+b}{a-b}$
b $\frac{a-b}{a+b}$
c $\frac{a-b) b}{a+b}$
d $\quad-\frac{a-b}{a+b) b}$
49. The probability that out of 10 persons, all born in April, at least two have the same birthday is

$$
\begin{aligned}
& \text { a }-\frac{3 c_{30}}{30)^{10}} \quad \text { b } 1 \quad-\frac{{ }^{3} c_{10}}{30!} \\
& \text { c } \frac{30^{10}-3_{c 10}}{30^{10}} \text { d None of the above }
\end{aligned}
$$

50. There are n-persons sitting in a row. Two of them are selected at random. The probability that two selected persons are not together, is
a $\frac{2}{n}$ (b) $1-\frac{2}{n}$
c $\frac{n(n-1)}{n+1)(n+2)}$ d None of these
